
full circle magazine #58 8 contents ^

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3300

This month, we'll explore
yet another GUI designer,
this time for Tkinter. Many
people have an issue with

Tkinter because it doesn't offer a
built-in designer. While I've shown
you how to easily design your
applications without a designer, we
will examine one now. It's called
Page. Basically it's a version of
Visual TCL with Python support on
top. The current version is 3.2 and
can be found at
http://sourceforge.net/projects/pa
ge/files/latest/download.

Prerequisites

You need TCK/TK 8.5.4 or later,
Python 2.6 or later, and pyttk -
which you can get (if you don't
already have it) from
http://pypi.python.org/pypi/pyttk.
You probably have all of these with
the possible exception of pyttk.

Installation

You can't really ask for an easier
installation routine. Simply unpack

the distribution file into a folder of
your choice. Run the script called
“configure” from the folder where
you just unpacked everything. This
will create your launch script called
“page” which you use to get
everything going. That's it.

Learning Page

When you start Page, you'll get
three windows (forms). One is a
“launch pad”, one is a toolbox, and
one shows the Attribute Editor.

To start a new project, click on
the Toplevel button in the toolbox.

This creates your main form.
You can move it wherever you wish
on your screen. Next, and from
now on, click on a widget in the
tool box and then click where you
want it on the main form.

For now, let's do a button. Click
on the Button button on the
toolbox, and then click somewhere
on the main form.

Next, in the launch pad form,
click on Window and select
Attribute Editor (if it's not already
showing). Your single button
should be highlighted already, so
move it around the form and when
you release the mouse button you
should see the position change in
the attribute editor form under 'x
position' and 'y position'.

Here we can set other
attributes such as the text on the
button (or most any other widget),
the alias for the widget (the name
we will refer to in our code), color,
the name we will call it and more.
Near the bottom of the attribute
editor is the text field. This is the
text that appears to the user for, in
this case, the button widget. Let's
change this from “button” to “Exit”.
Notice that now the button says
“Exit”. Now resize the form to just
show the button and recenter the
button in the form.

Next click in the main form
someplace where the button isn't.
The attribute editor form now
shows the attributes for the main
form. Find the “title” field and

http://sourceforge.net/projects/page/files/latest/download
http://pypi.python.org/pypi/pyttk

full circle magazine #58 9 contents ^

HOWTO - BEGINNING PYTHON 30
change this from “New Toplevel 1”
to “Test Form”.

Now, before we save our
project, we need to create a folder
to hold our project files. Create a
folder somewhere on your drive
called “PageProjects”. Now, in the
launch pad window, select File then
Save As. Navigate to your
PageProjects folder, and, in the
dialog box, type TestForm.tcl and
click the Save button. Notice this is
saved as a TCL file, not a Python
file. We'll create the python file
next.

In the launch pad, find the
Gen_Python menu item and click it.
Select Generate Python and a new
form appears.

Page has generated (as the
name suggests) our python code
for us and placed it in a window for

us to view. At the bottom of this
form, are three buttons...Save, Run,
and Close.

Click Save. If, at this point, you
were to look in your PageProjects
folder, you will see the python file
(TestForm.py). Now click on the
Run button. In a few seconds, you'll
see the project start up. The
button is not connected to
anything yet, so it won't do
anything if you click on it. Simply
close the form with the “X” in the
corner of the window. Now close
the Python Console window with
the close button at the bottom
right.

Back at our main form, highlight

the Exit button and right click on it.
Select “Bindings...”. Under the
menu is a set of buttons.

The first on the left allows you
to create a new binding. Click on
“Button-1”. This allows us to enter
the binding for the left mouse
button. In the window on the right,
type “Button1Click”.

Save and generate the python
code again. Scroll down in the
Python Console to the bottom of
the file. Above the “class
Test_Form” code is the function we
just asked to be created. Notice
that at this point, it simply is
passed. Look further down and
you'll see the code that creates and
controls our button. Everything is
done for us already. However, we
still have to tell the button what to
do. Close the Python Console and
we'll continue.

On the launch pad, click Window
then select Function List. Here we
will write our method to close the
window.

The first button on the left is
the Add button. Click it. In the
Function box, type
“py:Button1Click” and, in the
Arguments box, type “p1”, and

http://www.cafelinux.org/OzOs/

full circle magazine #58 10 contents ^

change the text in the lower box
to...

def Button1Click(p1):

sys.exit()

Click on the checkmark and we
are done with this.

Next we have to bind this
routine to the button. Select the
button in the form, right click it,
and select “Bindings...”. As before,
click on the far left button on the
toolbar and select Button-1. This is
the event for the left mouse
button click. In the right text box,
enter “Button1Click”. Make sure
you use the same case that you did
for the Function we just created.
Click the checkmark on the right
side.

Now save and generate your

python code.

You should see the following
code near the bottom, but
OUTSIDE of the Test_Form class...

def Button1Click(p1) :

sys.exit()

And the last line of the class
should be...

self.Button1.bind('<Button­

1>',Button1Click)

Now, if you run your code and
click on the Exit button, the form
should close properly.

Moving Forward

Now let's do something more
complicated. We'll create a demo
showing some of the widgets that
are available. First close Page and
restart it. Next, create a new
Toplevel form. Add two frames,
one above the other and expand
them to pretty much take up the
entire width of the form. In the top
frame, place a label, and, using the
attributes editor, change the text
to “Buttons:”. Next, add two
buttons along the horizontal plane.
Change the text of the left one to

“Normal”, and the right one to
“Sunken”. While the sunken button
is selected, change the relief to
“sunken” and name it btnSunken.
Name the “Normal” button
“btnNormal”. Save this project as
“Demos.tcl”.

Next, place in the lower frame a
label saying “Radio Buttons” and
four radio buttons like in the image
below. Finally, place an Exit button
below the bottom frame.

Before we work on the bindings,
let's create our click functions.
Open the Function List and create
two functions. The first should be
called btnNormalClicked and the
other btnSunkenClicked. Make sure
you set the arguments box to
include p1. Here's the code you
should have for them...

def btnNormalClicked(p1):

print "Normal Button Clicked"

def btnSunkenClicked(p1) :

print "Sunken Button Clicked"

Let's add our button bindings.
For each button, right click it,
select “Bindings...”, and add, as
before, a binding to the functions
we created. For the normal button,
it would be “btnNormalClicked”,
and for the sunken button it would
be btnSunkenClicked. Save and
generate your code. Now, if you
were to test the program under
the “Run” option of the Python
Console, and click any of the
buttons, you won't see anything
happen. However, when you close
the application, you should see the
print responses. This is normal for
Page and if you simply run it from
the command line as you normally
do, things should work as
expected.

Now for our radio buttons. We
have grouped them in two
“clusters”. The first two (Radio 1
and Radio 2) will be cluster 1 and
the other two will be cluster 2.
Click on Radio1 and in the
Attribute Editor, set the value to 0
and the variable to “rbc1”. Set the
variable for Radio 2 to “rbc1” and
the value to 1. Do the same thing

HOWTO - BEGINNING PYTHON 30

full circle magazine #58 11 contents ^

Greg Walters is owner of RainyDay
Solutions, LLC, a consulting company
in Colorado and has been
programming since 1972. He enjoys
cooking, hiking, music, and spending
time with his family. His website is
www.thedesignatedgeek.net.

for Radio 3 and Radio 4 but for
both of these set the variable to
“rbc2”. If you want, you can deal
with the click of the radiobuttons
and print something to the
terminal, but for now, the
important thing is that the clusters
work. Clicking Radio1 will deselect
Radio2 and not influence Radio3 or
Radio4, and the same for Radio2
and so on.

Finally, you should create a
function for the Exit button, and
bind it to the button like we did in
the first example.

If you've been following along
as we have done our other Tkinter
applications, you should be able to
understand the code shown above
right. If not, please go back a few
issues for a full discussion of this
code.

You can see that using Page
makes the basic design process
much easier than doing it yourself.
We've only scratched the surface of
what Page can do, and we'll start
doing something much more
realistic next time.

The python code can be found
on pastebin at
http://pastebin.com/qq0YVgTb.

One note before we go for this
month. You might have noticed
that I've missed a couple of issues.
This is due to my wife being
diagnosed with cancer last year. As
hard as I have tried to keep things
from falling through the cracks, a
number of things have. One of
these things is my old domain/web
site at
www.thedesignatedgeek.com. I
blew it and missed the renewal.
Due to this, the domain was sold
out from under me. I have set up
www.thedesignatedgeek.net with
all the old stuff. I will be working
hard the next month to bring it all
up to date.

See you next time.

HOWTO - BEGINNING PYTHON 30

def set_Tk_var():

These are Tk variables passed to Tkinter and must

be defined before the widgets using them are created.

global rbc1

rbc1 = StringVar()

global rbc2

rbc2 = StringVar()

def btnExitClicked(p1) :

sys.exit()

def btnNormalClicked(p1) :

print "Normal Button Clicked"

def btnSunkenClicked(p1) :

print "Sunken Button Clicked"

The Ubuntu Podcast covers all
the latest news and issues facing
Ubuntu Linux users and Free
Software fans in general. The
show appeals to the newest user
and the oldest coder. Our
discussions cover the
development of Ubuntu but
aren’t overly technical. We are
lucky enough to have some
great guests on the show, telling
us first hand about the latest
exciting developments they are
working on, in a way that we can
all understand! We also talk
about the Ubuntu community
and what it gets up to.

The show is presented by
members of the UK’s Ubuntu
Linux community. Because it is
covered by the Ubuntu Code of
Conduct it is suitable for all.

The show is broadcast live every
fortnight on a Tuesday evening
(British time) and is available for
download the following day.

podcast.ubuntu-uk.org

http://www.thedesignatedgeek.net
http://pastebin.com/qq0YVgTb
http://www.thedesignatedgeek.net
http://podcast.ubuntu-uk.org/

full circle magazine #59 7 contents ^

HHOOWW--TTOO
Written by Greg D. Walters BBeeggiinnnniinngg PPyytthhoonn -- PPaarrtt 3311

After our last meeting you
should have a fairly good
idea of how to use Page.
If not, please read last

month's article. We'll continue this
time by creating a file list
application with a GUI. The goal
here is to create a GUI application
that will recursively walk through a
directory, looking for files with a
defined set of extensions, and
display the output in a treeview.
For this example we will look for
media files with the extensions of
“.avi”, “.mkv”, “.mv4”, “.mp3” and
“.ogg”.

This time, the text might seem a
bit terse in the design portion. All
I'm going to do is give you
directions for placement of
widgets and the required
attributes and values like this...

Widget

Attribute: Value

I will only quote text string
when it is needed. For example for
one of the buttons, the text should
be set to “...”.

Here's what the GUI of our
application will look like...

As you can see, we have our
main form, an exit button, a text
entry box with a button that will
call up an ask for directory dialog
box, 5 check boxes for extension
selecting extension types, a “GO!”
button to actually start the
processing and a treeview to
display our output.

So, let's get started. Fire up
Page and create a new top level
widget. Using the Attribute Editor
set the following attributes.

Alias: Searcher

Title: Searcher

Be sure to save often. When you
save the file, save it as “Searcher”.
Remember, Page puts the .tcl
extension for you and when you
finally generate the python code, it
will be saved in the same folder.

Next add a frame. It should go
at the very top of the main frame.
Set the attributes as follows.

Width: 595

Height: 55

x position: 0

y position: 0

In this frame, add a button. This
will be our Exit button.

Alias: btnExit

Text: Exit

Move this close to the center of
the frame or close to the frame's
right side. I set mine to X 530 and Y
10.

Create another frame.

Width: 325

Height: 185

y position: 60

Here is what this frame will look

like, to give you a guide going
forward through this section.

In this frame, add a label. Set
the text attribute to “Path:”. Move
it close to the top left of the frame.

In the same frame, add an entry
widget.

Alias: txtPath

Text: FilePath

Width: 266

Height: 21

Add a button to the right of the
entry widget.

Alias: btnSearchPath

Text: “...” (no quotes)

Add five (5) check buttons. Put
them in the following order...

full circle magazine #59 8 contents ^

HOWTO - BEGINNING PYTHON 31
x

x x

x x

The three check buttons on the
left are for video files and the two
on the right are for audio files. We
will deal with the three on the left
first, then the two on the right.

Alias: chkAVI

Text: “.avi” (no quotes)

Variable: VchkAVI

Alias: chkMKV

Text: “.mkv” (no quotes)

Variable: VchkMKV

Alias: chkMV4

Text: “.mv4” (no quotes)

Variable: VchkMV4

Alias: chkMP3

Text: “.mp3” (no quotes)

Variable: VchkMP3

Alias: chkOGG

Text: “.ogg” (no quotes)

Variable: VchkOGG

Finally, in this frame add a
button somewhere below the five
check boxes and somewhat
centered within the frame.

Alias: btnGo

Text: GO!

Now add one more frame below
our last frame.

Width: 565

Height: 265

I placed mine around X 0 Y 250.
You might have to resize your main
form to have the entire frame
show. Within this frame, add a
Scrolledtreeview widget.

Width: 550

Height: 254

X Position: 10

Y Position: 10

There. We've designed our GUI.
Now all that is left to do is create
our function list and bind the
functions to our buttons.

In the Function list window, click
the New button (the far left
button). This brings up the new
function editor. Change the text in
the Function entry box from “py:
xxx” to “py:btnExitClick()”. In the
arguments entry box type “p1”. In
the bottom multiline entry box,
change the text to:

def btnExitClick(p1):

sys.exit()

Notice that this is not indented.
Page will do that for us when it
creates the python file.

Next create another function
called btnGoClick. Remember to
add a passed parameter of “p1”.
Leave the “pass” statement. We'll
change that later.

Finally, add another function
called “btnSearchPath”. Again,
leave the pass statement.

Lastly, we need to bind the
buttons to the functions we just
created.

Right-click on the exit button
we created, select Bind. A large
box will pop up. Click on the New
binding button, Click on Button-1
and change the word “TODO” in
the right text entry box to
“btnExitClick”. Do NOT include the
parens () here.

Bind the GO button to
btnGoClick and the “...” button to
btnSearchPathClick.

Save your GUI and generate the
python code.

Now all we have left is to create
the code that “glues” the GUI
together.

Open up the code we just

generated in your favorite editor.
Let's start off by examining what
Page created for us.

At the top of the file is our
standard python header and a
single import statement to import
the sys library. Next is some rather
confusing (at first glance) code.
This basically looks at the version
of python you are trying to run the
application in and then to import
the correct versions of the tkinter
libraries. Unless you are using
python 3.x, you can basically ignore
the last two.

We'll be modifying the 2.x code
portion to import other tkinter
modules in a few moments.

Next is the “vp_start_gui()”
routine. This is the program's main
routine. This sets up our gui, sets
the variables we need, and then
calls the tkinter main loop. You
might notice the line “w = None”
below this. It is not indented and it
isn't supposed to be.

Next are two routines
(create_Searcher and
destroy_Searcher) that are used to
replace the main loop routine if we
are calling this application as a

full circle magazine #59 9 contents ^

library. We don't need to worry
about these.

Next is the “set_Tk_var”
routine. We define the tkinter
variables used that need to be set
up before we create the widgets.
You might recognize these as the
text variable for the FilePath entry
widget and the variables for our
check boxes. The next three
routines here are the functions we
created using the function editor
and an “init()” function.

Run the program now. Notice
that the check buttons have grayed
out checks in them. We don't want
that in our “release” app, so we'll
create some code to clear them
before the form is displayed to the
user. The only functioning thing
other than the check boxes is the
Exit button.

Go ahead and end the program.

Now, we'll take a look at the
class that actually holds the GUI
definition. That would be “class
Searcher”. Here is where all the
widgets are defined and placed in
our form. You should be familiar
with this by now.

Two more classes are created
for us that hold the code to
support the scrolled tree view. We
don't have to change any of this. It
was all created by Page for us.

Now let's go back to the top of
the code and start modifying.

We need to import a few more
library modules, so under the
“import sys” statement, add...

import os

from os.path import join,

getsize, exists

Now find the section that has
the line “py2 = True”. As we said
before, this is the section that
deals with the tkinter imports for
Python version 2.x. Below the
“import ttk”, we need to add the
following to support the FileDialog
library. We also need to import the
tkFont module.

import tkFileDialog

import tkFont

Next we need to add some
variables to the “set_Tk_var()”
routine. At the bottom of the
routine, add the following lines...

global exts, FileList

exts = []

FileList=[]

Here we create two global
variables (exts and FileList) that
will be accessed later on in our
code. Both are lists. “exts” is a list
of the extensions that the user
selects from the GUI. “FileList"
holds a list of lists of the matching
files found when we do our search.
We'll use that to populate the
treeview widget.

Since our “btnExitClick” is
already done for us by Page, we'll
deal with the “btnGoClick” routine.
Comment out the pass statement
and add the code so it looks like
this...

def btnGoClick(p1) :

#pass

BuildExts()

fp = FilePath.get()

e1 = tuple(exts)

Walkit(fp,e1)

LoadDataGrid()

This is the routine that will be
called when the user clicks the
“GO!” button. We call a routine
called “BuildExts” which creates
the list of the extensions that the
user has selected. Then we get the
path that the user has selected
from the AskDirectory dialog and
assign that to the fp variable. We
then create a tuple from the
extension list, which is needed
when we check for files. We then
call a routine called “Walkit”,
passing the target directory and
the extension tuple.

Finally we call a routine called
“LoadDataGrid”.

Next we need to flesh out the
“btnSearchPathClick” routine.
Comment out the pass statement
and change the code to look like
this...

def btnSearchPathClick(p1) :

#pass

path =

tkFileDialog.askdirectory()

#**self.file_opt)

FilePath.set(path)

HOWTO - BEGINNING PYTHON 31

full circle magazine #59 10 contents ^

The init routine is next. Again,
make the code look like this...

def init():

#pass

Fires AFTER Widgets

and Window are created...

global treeview

BlankChecks()

treeview =

w.Scrolledtreeview1

SetupTreeview()

Here we create a global called
“treeview”. We then call a routine
that will clear the gray checks from
the check boxes, assign the
“treeview” variable to point to the
Scrolled treeview in our form and
call “SetupTreeview” to set the
headers for the columns.

Here's the code for the
BlankChecks routine which needs
to be next.

def BlankChecks():

VchkAVI.set('0')

VchkMKV.set('0')

VchkMP3.set('0')

VchkMV4.set('0')

VchkOGG.set('0')

Here, all we are doing is setting
the variables (which automatically
sets the check state in our check
boxes) to “0”. If you remember,
whenever the check box is clicked,
this variable is automatically
updated. If the variable is changed
by our code, the check box
responds as well. Now (above right)
we'll deal with the routine that
builds the list of extensions from
what the user has clicked.

Cast your memory
back to my ninth article in
FCM#35. We wrote some
code to create a catalog
of MP3 files. We'll use a
shortened version of that
routine (middle right).
Refer back to FCM#35 if
you have questions about
this routine.

Next (bottom right) we
call the SetupTreeview
routine. It's fairly
straightforward. We define a
variable “ColHeads” with the
headings we want in each
column of the treeview. We

do this as a list. We then set the
heading attribute for each column.
We also set the column width to
the size of this header.

Finally we have to create the
“LoadDataGrid” routine (next
page, top right) which is where we
load our data into the treeview.
Each row of the treeview is one
entry in the FileList list variable.
We also adjust the width of each
column (again) to match the size of
the column data.

That's it for the first blush of

the application. Give it a run and
see how we did. Notice that if you
have a large number of files to go
through, the program looks like it's
not responding. This is something

HOWTO - BEGINNING PYTHON 31

def BuildExts():

if VchkAVI.get() == '1':

exts.append(".avi")

if VchkMKV.get() == '1':

exts.append(".mkv")

if VchkMP3.get() == '1':

exts.append(".mp3")

if VchkMV4.get() == '1':

exts.append(".mv4")

if VchkOGG.get() == '1':

exts.append(".ogg")

def Walkit(musicpath,extensions):

rcntr = 0

fl = []

for root, dirs, files in os.walk(musicpath):

rcntr += 1 # This is the number of folders we have walked

for file in [f for f in files if f.endswith(extensions)]:

fl.append(file)

fl.append(root)

FileList.append(fl)

fl=[]

def SetupTreeview():

global ColHeads

ColHeads = ['Filename','Path']

treeview.configure(columns=ColHeads,show="headings")

for col in ColHeads:

treeview.heading(col, text = col.title(),

command = lambda c = col: sortby(treeview, c, 0))

adjust the column's width to the header string

treeview.column(col, width =

tkFont.Font().measure(col.title()))

full circle magazine #59 11 contents ^

HOWTO - BEGINNING PYTHON 31
that needs to be fixed. We'll create
routines to change our cursor from
the default to a “watch” style
cursor and back so when we do
something that takes a long time,
the user will notice.

In the “set_Tk_var” routine, add
the following code at the bottom.

global

busyCursor,preBusyCursors,bus

yWidgets

busyCursor = 'watch'

preBusyCursors = None

busyWidgets = (root,)

What we do here is set up
global variables, assign them and
then we set the widget(s) (in
busyWidgets) we wish to respond
to the cursor change. In this case
we set it to root which is our full
window. Notice that this is a tuple.

Next we create two routines to
set and unset the cursor. First the
set routine, which we will call
“busyStart”. After our
“LoadDataGrid” routine, insert the
code shown middle right.

We first check to see if a value
was passed to “newcursor”. If not,
we default to the busyCursor. Then

we walk through the
busyWidgets tuple
and set the cursor to
whatever we want.

Now put the code
shown bottom right
below it.

In this routine, we
basically reset the
cursor for the widgets
in our busyWidget
tuple back to our
default cursor.

Save and run your
program. You should
find that the cursor
changes
whenever you
have a long list of
files to go
through.

While this
application
doesn't really do
much but show
you how to use
Page to create
really fast code development. From
today's article, you can see how
having a good design of your GUI
ahead of time can make the
development process easy and

fairly painless.

The tcl file is saved in pastebin
at http://pastebin.com/AA1kE4Dy
and the python code is saved at

http://pastebin.com/VZm5un3e.

See you next time.

def LoadDataGrid():

global ColHeads

for c in FileList:

treeview.insert('','end',values=c)

adjust column's width if necessary to fit each value

for ix, val in enumerate(c):

col_w = tkFont.Font().measure(val)

if treeview.column(ColHeads[ix],width=None)<col_w:

treeview.column(ColHeads[ix], width=col_w)

def busyStart(newcursor=None):

global preBusyCursors

if not newcursor:

newcursor = busyCursor

newPreBusyCursors = {}

for component in busyWidgets:

newPreBusyCursors[component] = component['cursor']

component.configure(cursor=newcursor)

component.update_idletasks()

preBusyCursors = (newPreBusyCursors, preBusyCursors)

def busyEnd():

global preBusyCursors

if not preBusyCursors:

return

oldPreBusyCursors = preBusyCursors[0]

preBusyCursors = preBusyCursors[1]

for component in busyWidgets:

try:

component.configure(cursor=oldPreBusyCursors[component])

except KeyError:

pass

component.update_idletasks()

http://pastebin.com/AA1kE4Dy
http://pastebin.com/VZm5un3e

